Abstract

The organization of lipids within membranes strongly depends on the interaction with other lipid and protein molecules. Sphingolipids comprise a structurally diverse family, the ceramides being some of the simplest members. Although small chemical modifications of ceramide structure, such as varying the N-acyl chain length, lead to a complex polymorphism of this lipid, only long acyl chain ceramides have usually been studied and their properties became a putative hallmark for all ceramides. In this work, we studied the mixing behavior of C10:0 Cer, which has the N-acyl chain shorter than that of the sphingosine acyl chain and displays an expanded to condensed phase transition at 25mNm−1 at 24°C, with ceramides N-acylated with longer fatty acyl chains C12:0, C14:0 and C18:0. The N-acyl chain length determined the miscibility of ceramides in Langmuir monolayers, as it was ascertained by the dependence of the mean molecular area, perpendicular dipole moment, surface topography and film thickness with the mixture composition. We found that, as the hydrophobic mismatch in ceramides increased complete miscibility, partial or complete immiscibility can occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.