Abstract

The coronavirus (CoV) E protein plays an important role in virus assembly. The E protein is made in excess during infection and has been shown to have ion channel activity in planar lipid bilayers. However, a role in infection for the unincorporated E or its ion channel activity has not been described. To further investigate the function of the infectious bronchitis virus (IBV) E protein, we developed a recombinant version of IBV in which the E protein was replaced by a mutant containing a heterologous hydrophobic domain. The mutant virus, IBV-EG3, was defective in release of infectious virus particles. Further characterization of IBV-EG3 revealed that damaged particles appeared to accumulate intracellularly. The phenotype of IBV-EG3 suggested that the hydrophobic domain of IBV E may be important for the forward trafficking of cargo, so we determined whether IBV E facilitated the delivery of cargo to the plasma membrane. Surprisingly, we found that IBV E, but not EG3, dramatically reduced the delivery of cargo to the plasma membrane by impeding movement through the Golgi complex. Furthermore, we observed that overexpression of IBV E, but not EG3, induced the disassembly of the Golgi complex. Finally, we determined that the delivery of IBV S to the plasma membrane was reduced in cells infected with wild-type-IBV compared to those infected with IBV-EG3. Our results indicated that the hydrophobic domain of IBV E alters the host secretory pathway to the apparent advantage of the virus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.