Abstract

The flagellar protein FliG is the major component of the flagellar torque generator, and consists of two separate domains, I and II. Domain I is essential for flagellar assembly, while domain II in the C-terminal region is not essential for flagellar assembly but is dedicated to torque generation. Previously, we found that some fliG mutants were temperature-hypersensitive (hyper-TS) and identified three residues (F236V, D244Y and K273E) on domain II responsible for the temperature-sensitive (TS) phenotype. In this study, we substituted the three residues with all 20 amino acids (X) and analysed the behaviour of the variants at various temperatures. Each group of F236X, D244X and K273X variants gave rise to several hyper-TS mutants. In F236X, only substitution with F and W gave rise to wild-type, while other hydrophobic residues resulted in hyper-TS mutants and hydrophilic residues resulted in non-motile variants. The atomic arrangement around the F236 residue indicated that F236 together with neighbouring residues forms a hydrophobic core in the centre of domain II, which is well conserved among many species. These data suggest that the hydrophobic core may play an essential role in stabilizing the whole structure of domain II, so that changes of physiological conditions in the microenvironment of domain II do not perturb torque generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.