Abstract

▪ Abstract Solar coronal mass ejections (CMEs) are a major form of activity on the Sun. A CME takes 1015-16g of plasma from the low corona into the solar wind, to disturb the near-Earth space if the CME direction is favorable. We summarize current observations and ideas of CME physics to provide a hydromagnetic view of the CMEs as the products of continual magnetic flux emergence and an interplay between magnetic reconnection and approximate magnetic-helicity conservation in the corona. Each flux emergence brings helicity to accumulate additively in a coronal structure while excess magnetic energy is flared away by reconnection. Self-confinement eventually fails with a CME shedding the accumulated helicity out of the low corona to enable the field to reach the minimum-energy state. Similar evolutionary processes may occur in other magnetic stars and galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.