Abstract

Parkinson's disease (PD) is characterized by a progressive neurodegeneration in the substantia nigra and a striatal dopamine decrease. Striatal extracellular adenosine and ATP modulate the dopaminergic neurotransmission whereas guanosine has a protective role in the brain. Therefore, the regulation of their levels by enzymatic activity may be relevant to the clinical feature of PD. Here it was evaluated the extracellular nucleotide hydrolysis from striatal slices 4 weeks after a unilateral infusion with 6-OHDA into the medial forebrain bundle. This infusion increased ADP, AMP, and GTP hydrolysis by 15, 25, and 41%, respectively, and decreased GDP hydrolysis by 60%. There was no change in NTPDases1, 2, 3, 5, 6, and 5'-nucleotidase transcription. Dopamine depletion changes nucleotide hydrolysis and, therefore, alters the regulation of striatal nucleotide levels. These changes observed in 6-OHDA-lesioned animals may contribute to the symptoms observed in the model and provide evidence to indicate that extracellular purine hydrolysis is a key factor in understanding PD, giving hints for new therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.