Abstract

Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, such groundwater is non-renewable and is found in aquifers underlying fresh renewable groundwater bodies building the base support for them. The deep groundwater feeds the thermal mineralized springs issuing along the eastern escarpment of the Dead Sea-Jordan Rift Valley used for therapeutic purposes. In this article, the geologic set-up of the aquifer series underlying the different parts of the country is outlined to illustrate that all such aquifers extending from ground surface to the impermeable granitic Basement Complex are, in the majority of areas, directly or indirectly interconnected and that extractions from any aquifer, shallow or deep, are effectively taken from the same stock of the groundwater body. Hence, it is concluded that advocating the extraction of the deep salty or brackish groundwater is quasi extracting the same amount of groundwater from the overlying, shallower fresh water aquifers. The deep groundwater issues along the eastern escarpment of the Jordan Rift Valley and is used in household supplies, in irrigation and in spas as curative agent. In addition, the intended use of the deep groundwater to be extracted according to the suggested policy in household supplies requiring desalination, which is a costly unnecessary process accompanied with rigorous environmental ramifications of disposing off the desalination brines.

Highlights

  • Jordan is a country of about 89.000 km2 bordered by Syria in the north, Iraq in the northeast, Saudi Arabia in the East and south and Palestine and Israel in the west (Figure 1)

  • The deep groundwater feeds the thermal mineralized springs issuing along the eastern escarpment of the Dead Sea-Jordan Rift Valley used for therapeutic purposes

  • The series of rocks of Pre-Cambrian clastics to Lower Cretaceous sandstones overlying the granitic Basement Complex build one extended aquifer system underlying the whole territory of Jordan, containing fresh water in southern Jordan

Read more

Summary

Introduction

Jordan is a country of about 89.000 km bordered by Syria in the north, Iraq in the northeast, Saudi Arabia in the East and south and Palestine and Israel in the west (Figure 1). The Geology of Jordan consists of a granitic basement cropping out in southwest Jordan and dipping towards the north where it becomes gradually covered by clastic rocks of Pre-Cambrian through Lower Cretaceous ages with some missing formations of Devonian, Carboniferous and Lower Permian (Bandel & Salameh, 2013; Bender, 1975; Burdon, 1959) (Figure 2 and Figure 3) This package of rocks forms one interconnected aquifer having one groundwater table inclined in a northerly direction, with some modifications in the northern parts of the country. These rocks are topped by Cretaceous Tertiary bituminous marls in Central Jordan extending from Wadi Hasa in the south to Wadi Hisban in the north and from the Dead Sea eastern highlands in the west into Saudi-Arabia in the east. This is in so far of utmost importance because the shallow aquifers’ fresh groundwater is under severe over-exploitation and its water quality is deteriorating with time (Salameh & Shteiwi, 2019; Salameh, 2008, 1996)

Geologic Set-Up Relevant to Hydraulic Aquifers’ Interconnectedness
Geologic Profiles
Results and Discussion
Salameh DOI
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.