Abstract

Although chemical graphs do not show the difference between various atoms and electron lone pairs, the use of pseudo-graphs is a remedy. Modified molecular connectivity indices (mMCIs) have been suggested as showing the role of hydrogen atoms that are also useful in distinguishing isomers. A new algorithm for the δv number, the basic parameter of molecular connectivity indices (MCIs), has recently been proposed. This algorithm, which is centered on graph concepts such as complete graphs and general graphs, encodes the information of the bonded hydrogen atom on different atoms through a perturbation parameter that requires no new graph concepts. In this study, hydrogen perturbations in valence molecular connectivity indices were applied as structural descriptors for organic compounds in quantitative structure property relationship studies on the molar volume and molar refraction of liquid alkanes, alkenes and alcohols. The results show that, in most cases, these indices give improved correlations compared with the original MCIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.