Abstract

We substantiate the need for account of the proper electromagnetic field of the electron in the canonical problem of hydrogen in relativistic quantum mechanics. From mathematical viewpoint, the goal is equivalent to determination of the spectrum of everywhere regular solutions to the self-consistent system of Dirac and Maxwell equations (with external Coulomb potential). We demonstrate that only particular classes of solutions, "nonlinear" analogues of s- and p-states, can be obtained through decomposition of a solution in a series, with respect to the fine structure constant parameter $\alpha$. In the zero approximation at $\alpha \rightarrow 0$ the reduction to the self-consistent non-relativistic system of Schr\"odinger-Poisson equations takes place. For the latter, using both numerical and variational methods, we obtain the solutions corresponding to the ground and set of excited states. Spectrum of the binding energies with remarkable precision reproduces the "Bohrian" dependence $W_n = W/ n^2$. For this, the ionization energy $W$ proves to be universal yet about two times smaller than its observed value. Possibility of the renormalization procedure and the problem of account for relativistic corrections to the binding energies of order $\alpha^2$ are considered

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.