Abstract

The flow field of the traditional inner loop biological fluidized bed reactor (ILBFBR) and a new biological fluidized bed reactor set ring-type baffle was calculated by computational fluid dynamics. The results show that the gas holdup of drop zone in ILBFBR set the ring-type baffle can increase significantly, the flow rate of drop zone in ILBFBR with the ring-type baffle is faster than that in traditional ILBFBR, and turbulence intensity distributed more evenly all in rising zone and drop zone in ILBFBR set the ring-type baffle than that in traditional ILBFBR, but static pressure difference of ILBFBR set ring-type baffle is higher than that of the traditional ILBFBR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.