Abstract

The hydrated proton was studied at the water liquid/vapor interface using the multistate empirical valence bond (MS-EVB) methodology, which enables the migration of the excess proton to and about the interface through the fluctuating bond topology described by the Grotthuss shuttle mechanism. It was found in our model that the hydrated excess proton displays a marked preference for water liquid/vapor interfaces. The resulting stable surface structures can be explained through an examination of the bond network formed between the water/proton moiety and solvating water. These results suggest the excess proton can effectively behave as an amphiphile, displaying both hydrophobic and hydrophilic character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.