Abstract

This work presents a new hybrid metric map representation (HYMM) that combines feature maps with other dense metric sensory information. The global feature map is partitioned into a set of connected local triangular regions (LTRs), which provide a reference for a detailed multi-dimensional description of the environment. The HYMM framework permits the combination of efficient feature-based SLAM algorithms for localisation with, for example, occupancy grid (OG) maps. This fusion of feature and grid maps has several complementary properties; for example, grid maps can assist data association and can facilitate the extraction and incorporation of new landmarks as they become identified from multiple vantage points. The representation presented here will allow the robot to perform DenseSLAM. DenseSLAM is the process of performing SLAM whilst obtaining a dense environment representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.