Abstract

Consider azimuth-elevation direction finding by a uniform circular array of isotropic sensors. In the real world, the sensors may dislocate from their nominal positions. These dislocations could be modeled as random variables having an a priori known distribution. This paper investigates how the dislocations would affect azimuth-elevation direction finding by deriving the corresponding hybrid Cramer-Rao bounds. Maximum a posteriori estimators are derived and Monte Carlo simulations are conducted to validate the derived hybrid Cramer-Rao bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call