Abstract
This paper addresses the problem of tracking a moving source, e.g., a robot, equipped with both receivers and a source, that is tracking its own location and simultaneously estimating the locations of multiple plane reflectors. We assume a noisy knowledge of the robot’s movement. We formulate this problem, which is also known as simultaneous localization and mapping (SLAM), as a hybrid estimation problem. We derive the extended Kalman filter (EKF) for both tracking the robot’s own location and estimating the room geometry. Since the EKF employs linearization at every step, we incorporate a regulated kinematic model, which facilitates a successful tracking. In addition, we consider the echo-labeling problem as solved and beyond the scope of this paper. We then develop the hybrid Cramér-Rao lower bound on the estimation accuracy of both the localization and mapping parameters. The algorithm is evaluated with respect to the bound via simulations, which shows that the EKF approaches the hybrid Cramér-Rao bound (CRB) (HCRB) as the number of observation increases. This result implies that for the examples tested in simulation, the HCRB is an asymptotically tight bound and that the EKF is an optimal estimator. Whether this property is true in general remains an open question.
Highlights
Consider a source that moves in an unknown area while simultaneously mapping the environment and tracking its own location, a problem known as simultaneous localization and mapping (SLAM)
We provide a recursive expression for the Hybrid CRB (HCRB) which constitutes, at each time instance, a lower bound on the estimation error of the current location and of the room geometry
Simulation results showed that the algorithm achieves the HCRB as the number of observations increases
Summary
Consider a source that moves in an unknown area while simultaneously mapping the environment and tracking its own location, a problem known as SLAM. The analysis here applies to other similar scenarios, e.g., drone navigation [1], vehicles in urban areas [2], or marine vessels [3, 4] in ports. This problem is difficult since the robot must localize itself with respect to an incomplete map. As implied by its name, SLAM consists of two components, localization and mapping. Source localization is a well-studied problem in acoustic signal processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.