Abstract

AbstractThis paper presents a fast formulation of the hybrid boundary node method (Hybrid BNM) for solving problems governed by Laplace's equation in 3D. The preconditioned GMRES is employed for solving the resulting system of equations. At each iteration step of the GMRES, the matrix–vector multiplication is accelerated by the fast multipole method. Green's kernel function is expanded in terms of spherical harmonic series. An oct‐tree data structure is used to hierarchically subdivide the computational domain into well‐separated cells and to invoke the multipole expansion approximation. Formulations for the local and multipole expansions, and also conversion of multipole to local expansion are given. And a binary tree data structure is applied to accelerate the moving least square approximation on surfaces. All the formulations are implemented in a computer code written in C++. Numerical examples demonstrate the accuracy and efficiency of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.