Abstract

The Hurwitz form of a variety is the discriminant that characterizes linear spaces of complementary dimension which intersect the variety in fewer than degree many points. We study computational aspects of the Hurwitz form, relate this to the dual variety and Chow form, and show why reduced degenerations are special on the Hurwitz polytope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.