Abstract

The first twenty years of operation of gravitational-wave interferometers have shown that these detectors are affected by physical disturbances from the surrounding environment. These are seismic, acoustic, or electromagnetic disturbances that are mainly produced by the experiment infrastructure itself. Ambient noise can limit the interferometer sensitivity or potentially generate transients of non-astrophysical origin. Between 1 April 2019 and 27 March 2020, the network of second generation interferometers—LIGO, Virgo and GEO—performed the third joined observing run, named O3, searching for gravitational signals from the deep universe. A thorough investigation has been done on each detector before and during data taking in order to optimize its sensitivity and duty cycle. In this paper, we first revisit typical sources of environmental noise and their coupling paths, and we then describe investigation methods and tools. Finally, we illustrate applications of these methods in the hunt for environmental noise at the Virgo interferometer during the O3 run and its preparation phase. In particular, we highlight investigation techniques that might be useful for the next observing runs and the future generation of terrestrial interferometers.

Highlights

  • Gravitational waves (GW) from coalescence of compact binary systems have been detected by km-scale laser interferometers measuring the tiny strain of space-time they produce [1]

  • Scattered light noise paths can be excited. This was still a potential noise issue before O3, as we demonstrated with fly-over tests that were performed in collaboration with the italian 46th air brigade [38]

  • In order to visualize the variability of the ambient fields, projections are computed while using percentile amplitude spectral density (ASD) of the ambient fields

Read more

Summary

Introduction

Gravitational waves (GW) from coalescence of compact binary systems have been detected by km-scale laser interferometers measuring the tiny strain of space-time they produce [1]. The global gravitational-wave detector network currently consists of two Advanced LIGO detectors in Hanford (WA) and Livingston (LA), USA [8]; the Advanced Virgo detector in Italy [9]; the GEO600 detector in Germany [10]; and, the KAGRA [11] underground cryogenic interferometer in Japan. These detectors are power-recycled laser Michelson interferometers with 4 km (LIGO),

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.