Abstract
The serotonin 5-HT(4) receptor has recently gained a lot of attention for its functional roles in central processes such as memory and cognition. In this study, we show that activation of the human 5-HT(4) (h5-HT(4)) receptor stimulates the secretion of the non-amyloidogenic soluble form of the amyloid precursor protein (sAPPalpha). 5-HT enhanced the level of secreted sAPPalpha in a time- and dose-dependent manner in Chinese hamster ovary cells stably expressing the h5-HT(4(e)) receptor isoform. The increase was inhibited by the selective 5-HT(4) receptor antagonist, GR113808. The 5-HT(4) selective agonists, prucalopride and renzapride, also increased secreted sAPPalpha in IMR32 human neuroblastoma cells. The stimulatory effect of 5-HT was mimicked by forskolin, a direct activator of adenylyl cyclase, and 8-bromo-cAMP, a membrane-permeant cAMP analogue. On the contrary, inhibition of protein kinase A (PKA) by H89 potentiated the 5-HT-induced increase in both secreted and cellular sAPPalpha. This phenomenon involves a novel PKA-independent stimulatory process that overcomes a PKA-dependent inhibitory one. Finally, activation of the h5-HT(4(e)) receptor did not modify extracellular amyloid beta-protein in Chinese hamster ovary cells transfected with the human APP695. Given the neuroprotective and enhancing memory effects of sAPPalpha, our results may open a new avenue for the treatment of Alzheimer's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.