Abstract

The monoterpene d-limonene is a naturally occurring chemical which is the major component in oil of orange. Currently, d-limonene is widely used as a flavor and fragrance and is listed to be generally recognized as safe (GRAS) in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations). Recently, however, d-limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to d-limonene causes a significant incidence of renal tubular tumors exclusively in male rats. Although d-limonene is not carcinogenic in female rats or male and female mice given much higher dosages, the male rat-specific nephrocarcinogenicity of d-limonene may raise some concern regarding the safety of d-limonene for human consumption. A considerable body of scientific data has indicated that the renal toxicity of d-limonene results from the accumulation of a protein, α2u-globulin, in male rat kidney proximal tuble lysosomes. This protein is synthesized exclusively by adult male rats. Other species, including humans, synthesize proteins that share significant homology with α2u-globulin. However, none of these proteins, including the mouse equivalent of α2u-globulin, can produce this toxicity, indicating a unique specificity for α2u-globulin. With chronic exposure to d-limonene, the hyaline droplet nephropathy progresses and the kidney shows tubular cell necrosis, granular cast formation at the corticomedullary junction, and compensattor cell proliferation. Both d-limonene and cis-d-limonene-1,2-oxide (the major metabolite involved in this toxicity) are negative in in vitro mutagenicity screens. Therefore, the toxicity-related renal cell proliferation is believed to be integrally involved in the carcinogenicity of d-limonene as persistent elevations in renal cell proliferation may increase fixation of spontaneously altered DNA or serve to promote spontaneously initiated cells. The scientific data base demonstrates that the tumorigenic activity of d-limonene in male rats is not relevant to humans. The three major lines of evidence supporting the human safety of d-limonene are (1) the male rat specificity of the nephrotoxicity and carcinogenicity; (2) the pivotal role that α2u-globulin plays in the toxicity, as evidenced by the complete lack of toxicity in other species despite the presence of structurally similar proteins; and (3) the lack of genotoxicity of both d-limonene and d-limonene-1,2-oxide, supporting the concept of a nongenotoxic mechanism, namely, sustained renal cell proliferation. Collectively, the evidence that the renal effects of d-limonene are confined to male rats because of the unique presence of α2u-globulin is quite compelling. In this regard, d-limonene is readily distinguished from classical renal carcinogens and should, therefore, not be subjected to traditional interspecies extrapolation and quantitative risk assessment. As d-limonene shows no toxicity or carcinogenicity in female rats or male and female mice when administered over a lifetime, it is considered safe for human consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.