Abstract

The flavor of foods and beverages is generally composed of a mixture of volatile compounds, however not all the molecules that form an aroma are sensorially relevant. The odor-active compounds present in a mixture are different for each subject, both in quantitative and qualitative terms. This means that the ability of the human nose to act as a chemical sensor varies among individuals. In this study, we used the headspace of roasted coffee beans as a complex olfactory stimulus and, by means of the coupled Gas Chromatography-Olfactometry (GC-O) technique, the single components of coffee flavor were separated. Each subject, previously classified for his/her olfactory status (normosmic, hyposmic or anosmic) by means of the Sniffin’ Sticks battery (composed of Threshold, Discrimination and Identification subtests), had to identify and evaluate each smelled molecule. The results show that the individual ability to detect individual compounds during the GC-O experiments and the odor intensity reported during the sniffing of pen #10 (the pen of the identification test) containing coffee aroma were related to TDI olfactory status (based on the score obtained from the sum composed of Threshold, Discrimination and Identification scores). We also found that the number of total molecules and of molecules smelling of coffee is linearly related to the TDI olfactory score. Finally, the odor intensity reported when sniffing pen #10 containing coffee aroma is positively correlated with the number of molecules detected and the average intensity reported. In conclusion, our findings show that the human perception of both individual compounds and complex odors is strongly conditioned by the olfactory function of subjects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call