Abstract

The gut microbiota is amongst the most densely populated microbial ecosystem on earth. While the microbiome exerts numerous health beneficial functions, the high density of micro-organisms within this ecosystem also facilitates horizontal transfer of antimicrobial resistance (AMR) genes to potential pathogenic bacteria. Over the past decades antibiotic susceptibility testing of specific indicator bacteria from the microbiome, such as Escherichia coli, has been the method of choice in most studies. These studies have greatly enlarged our understanding on the prevalence and distribution of AMR and associated risk factors. Recent studies using (functional) metagenomics, however, highlighted the unappreciated diversity of AMR genes in the human microbiome and identified genes that had not been described previously. Next to metagenomics, more targeted approaches such as polymerase chain reaction for detection and quantification of AMR genes within a population are promising, in particular for large-scale epidemiological screening. Here we present an overview of the indigenous microbiota as a reservoir of AMR genes, the current knowledge on this “resistome” and the recent and upcoming advances in the molecular diagnostic approaches to unravel this reservoir.

Highlights

  • Antimicrobial resistance (AMR) is worldwide one of the most important public health threats that we face currently

  • AMR jeopardizes the achievements of modern medicine, since the success of interventions such as organ transplantation, cancer chemotherapy, and major surgery depends on effective antimicrobial agents for prevention and treatment of infections

  • While the majority of studies on the epidemiology of antibiotic susceptibility have been focused on clinical isolates, the human microbiota warrants special attention as perhaps the most accessible reservoir of resistance genes due to the high likelihood of contact and genetic exchange with potential pathogens

Read more

Summary

The human microbiome as a reservoir of antimicrobial resistance

Edited by: Henk Aarts, National Institute for Public Health and the Environment, Netherlands. Reviewed by: Henk Aarts, National Institute for Public Health and the Environment, Netherlands Sabeel Padinhara Valappil, The University of Liverpool, UK. While the microbiome exerts numerous health beneficial functions, the high density of micro-organisms within this ecosystem facilitates horizontal transfer of antimicrobial resistance (AMR) genes to potential pathogenic bacteria. Over the past decades antibiotic susceptibility testing of specific indicator bacteria from the microbiome, such as Escherichia coli, has been the method of choice in most studies. These studies have greatly enlarged our understanding on the prevalence and distribution of AMR and associated risk factors.

INTRODUCTION
Findings
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.