Abstract

The microenvironment of lymphoid organs can aid healthy immune function through provision of both structural and molecular support. In mice, fibroblastic reticular cells (FRCs) create an essential T-cell support structure within lymph nodes, while human FRCs are largely unstudied. Here, we show that FRCs create a regulatory checkpoint in human peripheral T-cell activation through 4 mechanisms simultaneously utilised. Human tonsil and lymph node–derived FRCs constrained the proliferation of both naïve and pre-activated T cells, skewing their differentiation away from a central memory T-cell phenotype. FRCs acted unilaterally without requiring T-cell feedback, imposing suppression via indoleamine-2,3-dioxygenase, adenosine 2A Receptor, prostaglandin E2, and transforming growth factor beta receptor (TGFβR). Each mechanistic pathway was druggable, and a cocktail of inhibitors, targeting all 4 mechanisms, entirely reversed the suppressive effect of FRCs. T cells were not permanently anergised by FRCs, and studies using chimeric antigen receptor (CAR) T cells showed that immunotherapeutic T cells retained effector functions in the presence of FRCs. Since mice were not suitable as a proof-of-concept model, we instead developed a novel human tissue–based in situ assay. Human T cells stimulated using standard methods within fresh tonsil slices did not proliferate except in the presence of inhibitors described above. Collectively, we define a 4-part molecular mechanism by which FRCs regulate the T-cell response to strongly activating events in secondary lymphoid organs while permitting activated and CAR T cells to utilise effector functions. Our results define 4 feasible strategies, used alone or in combinations, to boost primary T-cell responses to infection or cancer by pharmacologically targeting FRCs.

Highlights

  • Stromal cells create specialised lymphoid support compartments within secondary lymphoid organs

  • The lymph node microenvironment contains an abundance of immune cells that interact with and within an intricate structural framework created by fibroblastic reticular cells

  • We investigated interactions between human T cells and human fibroblastic reticular cells from tonsils and lymph nodes

Read more

Summary

Introduction

Stromal cells create specialised lymphoid support compartments within secondary lymphoid organs. The signals they feed leukocytes have profound effects in many aspects of activation, proliferation, and differentiation [1]. Fibroblastic reticular cells (FRCs) construct the internal segregated structure of secondary lymphoid organs by acting as a scaffold for lymphocyte migration and secreting chemokine C-C motif ligand 19 (CCL19) and chemokine C-C motif ligand 21 (CCL21) to bring T cells and dendritic cells to the central T-cell zone and chemokine C-X-C motif ligand 13 (CXCL13) to bring B cells to outer B cell zones. Lymphocyte survival is further supported through secretion of survival factors interleukin 7 (IL-7) and B cell activating factor (BAFF) [2,3]. Several papers demonstrated that mouse lymph node–derived FRCs reduce T-cell proliferation. Effects on memory T-cell differentiation have not been assessed in mice

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.