Abstract

Cytotoxic activity (lymphotoxin (LT)) present in supernatants from lectin stimulated human lymphocytes in vitro is composed of a heterogeneous system of biological macromolecules which can be separated into multiple classes and subclasses on the basis of their molecular weight and charge. These studies further characterize a large molecular weight human LT class, termed complex (MW >200,000 d), which elutes in the void volume off Sephadex G-150 or Ultrogel AcA 44. Immunological studies on the complex, employing various rabbit anti-LT class and subclass antisera, revealed this material is a macromolecular assemblage of the smaller MW α, β, γ LT classes and subclasses. Furthermore, the reactivity of this material with anti-human Fab′ 2 (IgG) indicates these smaller molecular weight LT components can associate with immunoglobulin or Ig-like molecules. The materials present in the LT complex class appear to be noncovalently associated, since conditions of high ionic strength dissociate certain small MW LT components, while low ionic strength buffers may cause these components to reaggregate with the complex. When subjected to velocity sedimentation on sucrose gradients or gel filtration on Ultrogel AcA 22, LT complex activity elutes as several discrete peaks of activity in the 200,000 to 1,000,000 MW range. These findings suggest the concept that LT molecules can form discrete and specific macromolecular structures which contain the smaller MW LT classes. Moreover, these structures can also associate with immunoglobulin-like molecules to form secondary LT-Ig complexes. This may have important biological significance in explaining how nonspecific cell toxins could play a role in specific or nonspecific cell lytic reactions in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.