Abstract

Infection of T lymphocytes by the human immunodeficiency virus causes drastic alterations in the intracellular cation content of the infected cells. The human immunodeficiency virus type 1 genome encodes several accessory proteins, including Vpu, an integral membrane protein that forms ion channels in planar lipid bilayers. The effect of Vpu on the permeability of the plasma membrane to several molecules has been analyzed. Expression of vpu in Escherichia coli cells increases membrane permeability to a number of molecules such as 2-nitrophenyl beta-D-galactopyranoside, uridine, the impermeable translation inhibitor hygromycin B, and lysozyme. In addition, transient expression of Vpu in eukaryotic COS cells enhances entry of charged molecules such as hygromycin B and neurobiotin into these cells. The effect of Vpu on cell membrane permeability resembles that reported for other membrane-active proteins from different animal viruses, including influenza M2, Semliki Forest virus 6K, and poliovirus 2B and 3A proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.