Abstract

Ritonavir is a potential therapeutic agent in lung cancer, but its targets in lung adenocarcinoma are unknown, as are candidate biomarkers for its activity. RNAi was used to identify genes whose expression affects ritonavir sensitivity. Synergy between ritonavir, gemcitabine, and cisplatin was tested by isobologram analysis. Ritonavir inhibits growth of K-ras mutant lung adenocarcinoma lines A549, H522, H23, and K-ras wild-type line H838. Ritonavir causes G0/G1 arrest and apoptosis. Associated with G0/G1 arrest, ritonavir down-regulates cyclin-dependent kinases, cyclin D1, and retinoblastoma protein phosphorylation. Associated with induction of apoptosis, ritonavir reduces survivin messenger RNA and protein levels more than twofold. Ritonavir inhibits phosphorylation of c-Src and signal transducer and activator of transcription protein 3, which are important events for survivin gene expression and cell growth, and induces cleavage of PARP1. Although knock down of survivin, c-Src, or signal transducer and activator of transcription protein 3 inhibits cell growth, only survivin knock down enhances ritonavir inhibition of growth and survivin overexpression promotes ritonavir resistance. Ritonavir was tested in combination with gemcitabine or cisplatin, exhibiting synergistic and additive effects, respectively. The combination of ritonavir/gemcitabine/cisplatin is synergistic in the A549 line and additive in the H522 line, at clinically feasible ritonavir concentrations (<10 μM). Ritonavir is of interest for lung adenocarcinoma therapeutics, and survivin is an important target and potential biomarker for its sensitivity. Ritonavir cooperation with gemcitabine/cisplatin might be explained by involvement of PARP1 in repair of cisplatin-mediated DNA damage and survivin in repair of gemcitabine-mediated double-stranded DNA breaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.