Abstract

Introduction. Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of typhoid fever. To establish an infection in the human host, this pathogen must survive the presence of bile salts in the gut and gallbladder.Hypothesis. S. Typhi uses multiple genetic elements to resist the presence of human bile.Aims. To determine the genetic elements that S. Typhi utilizes to tolerate the human bile salt sodium deoxycholate.Methodology. A collection of S. Typhi mutant strains was evaluated for their ability to growth in the presence of sodium deoxycholate and ox-bile. Additionally, transcriptomic and proteomic responses elicited by sodium deoxycholate on S. Typhi cultures were also analysed.Results. Multiple transcriptional factors and some of their dependent genes involved in central metabolism, as well as in cell envelope, are required for deoxycholate resistance.Conclusion. These findings suggest that metabolic adaptation to bile is focused on enhancing energy production to sustain synthesis of cell envelope components exposed to damage by bile salts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.