Abstract

PurposeTo investigate the change in axial length (AxL) and choroidal thickness (ChT) in response to continuous and alternating episodes of monocular myopic and hyperopic defocus.MethodsThe right eye of sixteen young adults was exposed to 60 minute episodes of either continuous or alternating myopic and hyperopic defocus (+3 DS & -3 DS) over six separate days, with the left eye optimally corrected for distance. During alternating defocus conditions, the eye was exposed to either 30 or 15 minute cycles of myopic and hyperopic defocus, with the order of defocus reversed in separate sessions. The AxL and ChT of the right eye were measured before, during and after each defocus condition.ResultsSignificant changes in AxL were observed over time, dependent upon the defocus condition (p < 0.0001). In general, AxL exhibited a greater magnitude of change during continuous than alternating defocus conditions. The maximum AxL elongation was +7 ± 7 μm (p = 0.010) in response to continuous hyperopic defocus and the maximum AxL reduction was -8 ± 10 μm of (p = 0.046) in response to continuous myopic defocus. During both 30 and 15 minute cycles of alternating myopic and hyperopic defocus of equal duration, the effect of opposing blur sessions cancelled each other and the AxL was near baseline levels following the final defocus session (mean change from baseline across all alternating defocus conditions was +2 ± 10 μm, p > 0.05). Similar, but smaller magnitude, changes were observed for ChT.ConclusionsThe human eye appears capable of temporal averaging of visual cues from alternating myopic and hyperopic defocus. In the short term, this integration appears to be a cancellation of the effects of the preceding defocus condition of opposite sign.

Highlights

  • Optical defocus can lead to predictable changes in choroidal thickness and eye growth in various animal species [1,2,3,4,5]

  • Significant changes in axial length (AxL) were observed over time, dependent upon the defocus condition (p < 0.0001)

  • AxL exhibited a greater magnitude of change during continuous than alternating defocus conditions

Read more

Summary

Introduction

Optical defocus can lead to predictable changes in choroidal thickness and eye growth in various animal species [1,2,3,4,5]. Rapid choroidal thickening in response to imposed myopic defocus [6, 7] precedes a slowing of longer-term eye growth [8,9,10,11], while rapid choroidal thinning in response to imposed hyperopic defocus [6, 7] precedes accelerated eye growth [8,9,10,11]. These compensatory changes result in the retinal photoreceptors moving closer to the defocused image plane. Investigations in human eyes have shown a bi-directional response to short-term imposed continuous myopic and hyperopic defocus in children [25] and adults [26,27,28,29,30,31], with a small magnitude axial length reduction associated with rapid choroidal thickening in response to myopic defocus and axial elongation associated with rapid choroidal thinning in response to hyperopic defocus

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call