Abstract

The hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a disorder of the urea cycle (UCD) and ornithine degradation pathway caused by mutations in the mitochondrial ornithine transporter (ORNT1). Unlike other UCDs, HHH syndrome is characterized by a less severe and variable phenotype that we believe may, in part, be due to genes with redundant function to ORNT1, such as the previously characterized ORNT2 gene. We reasoned that SLC25A29, a member of the same subfamily of mitochondrial carrier proteins as ORNT1 and ORNT2, might also have overlapping function with ORNT1. Here, we report that both the human and mouse SLC25A29, previously identified as mitochondrial carnitine/acyl-carnitine transporter-like, when overexpressed transiently also rescues the impaired ornithine transport in cultured HHH fibroblasts. Moreover, we observed that, in the mouse, the Slc25a29 message is more significantly expressed in the CNS and cultured astrocytes when compared with the liver and kidney. These results suggest a potential physiologic role for the SLC25A29 transporter in the oxidation of fatty acids, ornithine degradation pathway, and possibly the urea cycle. Our results show that SLC25A29 is the third human mitochondrial ornithine transporter, designated as ORNT3, which may contribute to the milder and variable phenotype seen in patients with HHH syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.