Abstract

8-hydroxy-2'-deoxyguanosine (8-OHdG) is a form of oxidative DNA damage caused by oxidative stress (OS), which is considered a major factor in male infertility. The cellular defense system against 8-OHdG involves base excision repair (BER) with the enzyme 8-Oxoguanine DNA glycosylase 1 (OGG1). However, studies on the single-nucleotide polymorphism (SNP) OGG1 Ser326Cys have demonstrated that the Cys326Cys genotype could be the cause of an increment in oxidative DNA damage. In this study, the OGG1 Ser326Cys polymorphism and its effect on DNA oxidation were evaluated in 118 infertile men. Polymorphic screening was performed using TaqMan allelic discrimination assays, and oxidative DNA damage was evaluated through the quantification of 8-OHdG and total antioxidant capacity (TAC); in addition, electrical bioimpedance spectroscopy (EBiS) measurements were used as a reference for different electrical properties associated with 8-OHdG concentrations. The detected Cys (G) allele frequency (0.4) was higher compared to the allele frequency reported in the "Allele Frequency Aggregator" (ALFA) and "Haplotype Map" (HapMap) projects for American populations (0.21-0.29), suggesting that the Cys (G) allele carrier could be a factor associated with American infertile populations. The values of 8-OHdG were twofold higher in carriers of the Cys326Cys (GG) genotype than the other genotypes and, in concordance, the TAC levels were threefold lower in Cys326Cys (GG) genotype carriers compared to the other genotypes. Moreover, the EBiS magnitude exhibited potential for the detection of different oxidative damage in DNA samples between genotypes. The Cys326Cys (GG) genotype is associated with oxidative DNA damage that could contribute to male infertility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.