Abstract
It was proved in 1957 by Huber that any complete surface with integrable Gauss curvature is conformally equivalent to a compact surface with a finite number of points removed. Counterexamples show that the curvature assumption must necessarily be strengthened in order to get an analogous conclusion in higher dimensions. We show in this paper that any non compact Riemannian manifold with finite $ L^{n/2} $ -norm of the Ricci curvature satisfies Huber-type conclusions if either it is a conformal domain with volume growth controlled from above in a compact Riemannian manifold or if it is conformally flat of dimension 4 and a natural Sobolev inequality together with a mild scalar curvature decay assumption hold. We also get partial results in other dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.