Abstract
The 2015 acoustical field survey on and around the central plaza platform (“ushnu”) at the Inca administrative complex of Huánuco Pampa advances understanding of Inca communication dynamics and innovates archaeoacoustical methodologies. We detail here a new archaeoacoustics method that cross-compares a sequence of human-performed sound sources along with a standard electronic acoustical test signal across survey points. This efficient and rigorous archaeological experiment produced extensible data and observations regarding Inca-designed site sonics and multi-directional communication dynamics. Our experiment design combines ecologically valid acoustical measurements with subjective researcher-observer data to chart sound transmission and reception of different classes of sound-producers, enabling the identification of environmental contingencies, and the estimation of site acoustical features. Calibrated, multiply repeated sonic test signals were measured from a strategically chosen set of geo-located and photo-documented source and receiver locations in absolute, relative, and subjective terms, simultaneously for each source-receiver pair. This method offers a systematic and comprehensive understanding of site-specific sonic dynamics via in-field observations and data recording, frequency-range comparison across test signals, attention to acoustical metrics and psychoacoustical precedents, and emphasis on practical repeatability for a range of archaeologically relevant sound sources. Our study posits the central platform at Huánuco Pampa as a strategic point for Inca elites to both observe and influence activities across the site, a finding extensible to other such platforms. The prominent architectural platform would serve as a tool for multi-directional communication, as well as to facilitate messaging about elite presence and imperial identity through the projection of sonic-visual displays. Beyond producing data about Huánuco Pampa and Inca architecture, our case-study implementation of this new method demonstrates an efficient and systematic approach to tracing the acoustical contingencies of architectural materials in archaeological contexts.
Highlights
This article details our case-study application of a new, efficient, and comparative method for archaeological acoustical surveying, a methodological contribution to archaeoacoustics and archaeological fieldwork practice
The case-study site for the application detailed in this article is Huánuco Pampa, an Inca administrative center in the central Peruvian highlands, where we have focused on acoustical communication dynamics afforded by its central plaza architecture
We examined the range of variation among sound sources for each receiver location, noting any trends in differences between measured and predicted sound levels, and using acoustical theory and experimental precedents to posit acoustical and temporal factors contributing to these differences
Summary
This article details our case-study application of a new, efficient, and comparative method for archaeological acoustical surveying, a methodological contribution to archaeoacoustics and archaeological fieldwork practice. Sonic communication was important to the Inca Empire, and this site-specific adaptation of theory and methods from acoustical science produces materially contingent evidence for past human interactions. In-situ testing of sonic communication dynamics can reveal features of site architecture and its landform settings, as well as produce data for reconstructive modeling. The case-study site for the application detailed in this article is Huánuco Pampa, an Inca administrative center in the central Peruvian highlands, where we have focused on acoustical communication dynamics afforded by its central plaza architecture. Site sonics are studied here as both temporally and spatially scalable, relevant to the understanding of site architecture in its landform setting, and the landscape archaeology
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.