Abstract

We determine the binding mode of a macrocyclic radicicol-like oxime to yeast HSP90 by combining computer simulations and experimental measurements. We sample the macrocyclic scaffold of the unbound ligand by parallel tempering simulations and dock the most populated conformations to yeast HSP90. Docking poses are then evaluated by the use of binding free energy estimations with the linear interaction energy method. Comparison of QM/MM-calculated NMR chemical shifts with experimental shift data for a selective subset of backbone 15N provides an additional evaluation criteria. As a final test we check the binding modes against available structure–activity-relationships. We find that the most likely binding mode of the oxime to yeast HSP90 is very similar to the known structure of the radicicol–HSP90 complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call