Abstract

Age-related cataract (ARC) is the prevalent cause of useful vision loss. Circular RNAs are related to ARC pathogenesis partly through their competing endogenous RNA (ceRNA) activity. Herein, we defined the action of hsa_circ_0105558 in hydrogen peroxide (H2O2)-driven apoptosis and oxidative damage in human lens epithelial SRA01/04 cells. Hsa_circ_0105558, microRNA (miR)-182-5p and activating transcription factor 6 (ATF6) were evaluated by a qRT-PCR or immunoblotting method. The hsa_circ_0105558/miR-182-5p and miR-182-5p/ATF6 relationships were predicted by bioinformatics analysis and confirmed by dual-luciferase reporter assay. Reactive oxygen species level, glutathione peroxidase level, superoxide dismutase activity, and malondialdehyde level were measured using the matched assay kits. Hsa_circ_0105558 was upregulated in human ARC lens and H2O2-exposed SRA01/04 cells. Suppression of hsa_circ_0105558 attenuated H2O2-driven SRA01/04 cell apoptosis and oxidative damage. Hsa_circ_0105558 targeted miR-182-5p, and reduced miR-182-5p expression reversed the influence of hsa_circ_0105558 depletion on H2O2-driven oxidative damage and apoptosis. ATF6 was a target of miR-182-5p, and miR-182-5p-driven downregulation of ATF6 regulated cell oxidative damage and apoptosis under H2O2 insult. Moreover, hsa_circ_0105558 functioned as a ceRNA to post-transcriptionally control ATF6 expression through miR-182-5p competition. Our study demonstrates that hsa_circ_0105558 modulates SRA01/04 cell oxidative damage and apoptosis under H2O2 insult through the miR-182-5p/ATF6 cascade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call