Abstract

The aim of this study was to investigate the mechanism underlying the role of a recently identified hsa_circ_0004805/hsa_miR-149-5p/transforming growth factor beta 2 (TGFB2) axis in the progression of diabetic retinopathy (DR). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis suggested that hsa_circ_0004805 was highly expressed in aqueous humor samples of patients with DR, whereas hsa_miR-149-5p showed the opposite trend. Meanwhile, the results of a dual-luciferase reporter assay indicated that hsa_miR-149-5p directly interacted with both hsa_circ_0004805 and TGFB2. Using a variety of assays (Cell Counting Kit-8, EdU-labeling, Transwell, flow cytometric, wound healing, tube formation assays), we found that the overexpression of hsa_circ_0004805 significantly downregulated the level of hsa_miR-149-5p and promoted DNA synthesis, proliferation, migration, and tube formation in human retinal microvascular epithelial cells (hRECs) cultivated in a high-glucose environment. In contrast, hsa_miR-149-5p mimics inhibited DNA synthesis, proliferation, migration, and tube formation in hRECs by reducing the expression of its downstream target TGFB2 as well as the levels of phosphorylated SMAD2; however, these effects were reversed by the overexpression of hsa_circ_0004805. In a streptozotocin-induced Sprague-Dawley rat model of DR, retinal vascular leakage, capillary decellularization, loss of pericytes, fibrosis, and gliosis were evident, which could be reversed by vitreous microinjection of rat miR-149-5p mimics (rno-miR-149-5p agomir). Combined, our findings indicated that, under hyperglycemia, the hsa_circ_0004805/hsa_miR-149-5p/TGFB2 axis plays a critical role in the retinal pathophysiology associated with the development of DR, and has potential as a therapeutic target in the treatment of this condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call