Abstract
Inactivation of the HRPT2 tumor suppressor gene is associated with the pathogenesis of the hereditary hyperparathyroidism-jaw tumor syndrome and malignancy in sporadic parathyroid tumors. The cellular function of the HPRT2 gene product, parafibromin, has not been defined yet. Here we show that parafibromin physically interacts with human orthologs of yeast Paf1 complex components, including PAF1, LEO1, and CTR9, that are involved in transcription elongation and 3' end processing. It also associates with modified forms of the large subunit of RNA polymerase II, in particular those phosphorylated on serine 5 or 2 within the carboxy-terminal domain, that are important for the coordinate recruitment of transcription elongation and RNA processing machineries during the transcription cycle. These interactions depend on a C-terminal domain of parafibromin, which is deleted in ca. 80% of clinically relevant mutations. Finally, RNAi-induced downregulation of parafibromin promotes entry into S phase, implying a role for parafibromin as an inhibitor of cell cycle progression. Taken together, these findings link the tumor suppressor parafibromin to the transcription elongation and RNA processing pathway as a PAF1 complex- and RNA polymerase II-bound protein. Dysfunction of this pathway may be a general phenomenon in the majority of cases of hereditary parathyroid cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.