Abstract
We present the $hp$-version of the discontinuous Galerkin method for the numerical solution of delay differential equations with nonlinear vanishing delays and derive error bounds that are explicit in the time steps, the degrees of the approximating polynomials, and the regularity properties of the exact solutions. It is shown that the $hp$ discontinuous Galerkin method exhibits exponential rates of convergence for smooth solutions on uniform meshes, and for nonsmooth solutions on geometrically graded meshes. The theoretical results are illustrated by various numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.