Abstract
Configuring redundant disk arrays is a black art. To configure an array properly, a system administrator must understand the details of both the array and the workload it will support. Incorrect understanding of either, or changes in the workload over time, can lead to poor performance. We present a solution to this problem: a two-level storage hierarchy implemented inside a single disk-array controller. In the upper level of this hierarchy, two copies of active data are stored to provide full redundancy and excellent performance. In the lower level, RAID 5 parity protection is used to provide excellent storage cost for inactive data, at somewhat lower performance. The technology we describe in this paper, known as HP AutoRAID, automatically and transparently manages migration of data blocks between these two levels as access patterns change. The result is a fully redundant storage system that is extremely easy to use, is suitable for a wide variety of workloads, is largely insensitive to dynamic workload changes, and performs much better than disk arrays with comparable numbers of spindles and much larger amounts of front-end RAM cache. Because the implementation of the HP AutoRAID technology is almost entirely in software, the additional hardware cost for these benefits is very small. We describe the HP AutoRAID technology in detail, provide performance data for an embodiment of it in a storage array, and summarize the results of simulation studies used to choose algorithms implemented in the array.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.