Abstract

The high-temperature corrosion behavior of Fe-30.1Mn-9.7Al-0.77C alloy initially coated with 2 mg/cm2 NaCl/Na2SO4 (100/0, 75/25, 50/50, 25/75 and 0/100 wt.%) deposits has been studied at 750°C in air. The result shows that weight-gain kinetics in simple oxidation reveals a steady-state parabolic rate law after 3 hr, while the kinetics with salt deposits all display multi-stage growth rates. The corrosion morphology of the alloy with 100% Na2SO4 coating is similar to that of simple oxidation. NaCl acts as the predominant corrosion species for Fe-Mn-Al-C alloy, inhibiting the formation of a protective oxide scale. For the alloy coated with over 50% NaCl in salts, NaCl induces selective oxidation of manganese and results in the formation of secondary ferrite in the alloy substrate as well as void-layers with different densities of voids layer by layer in the secondary-ferrite zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.