Abstract

We explain how the space of linearly recursive sequences over a field can be considered as a Hopf algebra. The algebra structure is that of divided-power sequences, so we concentrate on the perhaps lesser-known coalgebra (diagonalization) structure. Such a sequence satisfies a minimal recursive relation, whose solution space is the subcoalgebra generated by the sequence. We discuss possible bases for the solution space from the point of view of diagonalization. In particular, we give an algorithm for diagonalizing a sequence in terms of the basis of the coalgebra it generates formed by its images under the difference-operator shift. The computation involves inverting the Hankel matrix of the sequence. We stress the classical connection (say over the real or complex numbers) with formal power series and the theory of linear homogeneous ordinary differential equations. It is hoped that this exposition will encourage the use of Hopf algebraic ideas in the study of certain combinatorial areas of mathematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.