Abstract

Let M:=(M^{4},\om) be a 4-dimensional rational ruled symplectic manifold and denote by w_{M} its Gromov width. Let Emb_{\omega}(B^{4}(c),M) be the space of symplectic embeddings of the standard ball B^4(c) \subset \R^4 of radius r and of capacity c:= \pi r^2 into (M,\om). By the work of Lalonde and Pinsonnault, we know that there exists a critical capacity \ccrit \in (0,w_{M}] such that, for all c\in(0,\ccrit), the embedding space Emb_{\omega}(B^{4}(c),M) is homotopy equivalent to the space of symplectic frames \SFr(M). We also know that the homotopy type of Emb_{\omega}(B^{4}(c),M) changes when c reaches \ccrit and that it remains constant for all c \in [\ccrit,w_{M}). In this paper, we compute the rational homotopy type, the minimal model, and the cohomology with rational coefficients of \Emb_{\omega}(B^{4}(c),M) in the remaining case c \in [\ccrit,w_{M}). In particular, we show that it does not have the homotopy type of a finite CW-complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.