Abstract

Let M be a closed, oriented, n -manifold, and LM its free loop space. Chas and Sullivan defined a commutative algebra structure in the homology of LM, and a Lie algebra structure in its equivariant homology. These structures are known as the string topology loop product and string bracket, respectively. In this paper we prove that these structures are homotopy invariants in the following sense. Let f : M_1 \to M_2 be a homotopy equivalence of closed, oriented n -manifolds. Then the induced equivalence, Lf : LM_1 \to LM_2 induces a ring isomorphism in homology, and an isomorphism of Lie algebras in equivariant homology. The analogous statement also holds true for any generalized homology theory h_* that supports an orientation of the M_i 's.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.