Abstract

We develop the obstruction theory of the 2-category of abelian track categories, pseudofunctors and pseudonatural transformations by using the cohomology of categories. The obstructions are defined in Baues–Wirsching cohomology groups. We introduce translation cohomology to classify endomorphisms in the 2-category of abelian track categories. In a sequel to this paper we will show, under certain conditions which are satisfied by all homotopy categories, that a translation cohomology class determines the exact triangles of a triangulated category.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.