Abstract
In this paper, the nonlinear oscillation of planetary gear trains is investigated by the homotopy analysis method. The nonlinearity of planetary gear trains due to the periodically time-varying mesh stiffness and contact loss are included. In contrast to the perturbation analysis, the homotopy analysis method is independent of the contact loss ratio, and then can be applied to both small and large contact loss ratios. In this article, firstly the closed-form approximations for the primary resonance, sub-harmonic resonance, and super-harmonic resonance are obtained by homotopy analysis method. The accuracy of homotopy analysis method solutions is evaluated by numerical integration simulations. Results indicate that with relatively large contact loss ratios, the amplitude–frequency curves obtained by homotopy analysis method agree better with the results obtained by numerical integration than those obtained by the method of multiple scales. This study lays a higher accurate foundation for more complex nonlinear dynamic analysis of planetary gear trains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.