Abstract

The red genes of phage lambda specify two proteins, exonuclease and beta protein, which are essential for its general genetic recombination in recA- cells. These proteins seem to occur in vivo as an equimolar complex. In addition, beta protein forms a complex with another polypeptide, probably of phage origin, of Mr 70,000. The 70-kDa protein appears to be neither a precursor nor an aggregated form of either exonuclease or beta protein, since antibodies directed against the latter two proteins failed to react with 70-kDa protein on Ouchterlony double diffusion analysis. beta protein promotes Mg2+-dependent renaturation of complementary strands (Kmiec, E., and Holloman, W. K. (1981) J. Biol. Chem. 256, 12636-12639). To look for other pairing activities of beta protein, we developed methods of purification to free it of associated exonuclease. Exonuclease-free beta protein appeared unable to cause the pairing of a single strand with duplex DNA; however, like Escherichia coli single strand binding protein (SSB), beta protein stimulated formation of joint molecules by recA protein from linear duplex DNA and homologous circular single strands. Like recA protein, but unlike SSB, beta protein promoted the joining of the complementary single-stranded ends of phage lambda DNA. beta protein specifically protected single-stranded DNA from digestion by pancreatic DNase. The half-time for renaturation catalyzed by beta protein was independent of DNA concentration, unlike renaturation promoted by SSB and spontaneous renaturation, which are second order reactions. Thus, beta protein resembles recA protein in its ability to bring single-stranded DNA molecules together and resembles SSB in its ability to reduce secondary structure in single-stranded DNA.

Highlights

  • From the Departments of Human Genetics and Molecular Biophysicsand Biochemistry, Yale University School of Medicine, New Haven, Connecticut06510

  • The red genes of phage X specify two proteins, exonuclease and j3 protein, which are essential for its general genetic recombination in recA-cells.These proteins seem to occur in vivo asan equimolarcomplex

  • Like recA protein, but unlike single strand binding protein (SSB), j3 protein promoted the joining of the complementary single-stranded ends of phage X DNA. j3 protein protected single-stranded DNA from digestion bypancreatic DNase

Read more

Summary

Introduction

From the Departments of Human Genetics and Molecular Biophysicsand Biochemistry, Yale University School of Medicine, New Haven, Connecticut06510. J3 protein promotes Mg2+-dependent renaturation of complementary strands Like recA protein, but unlike SSB, j3 protein promoted the joining of the complementary single-stranded ends of phage X DNA.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call