Abstract

Triiodothyronine (T3) stimulates a robust increase (>40-fold) in transcription of the malic enzyme gene in chick embryo hepatocytes. Previous work has shown that optimal T3 regulation of malic enzyme transcription is dependent on the presence of an accessory element (designated as region E) that immediately flanks a cluster of five T3 response elements in the malic enzyme gene. Here, we have analyzed the binding of nuclear proteins to region E and investigated the mechanism by which region E enhances T3 responsiveness. In nuclear extracts from hepatocytes, region E binds heterodimeric complexes consisting of the homeodomain proteins PBX and MEIS1. Region E contains four consecutive PBX/MEIS1 half-sites. PBX-MEIS1 heterodimers bind the first and second half-sites, the third and fourth half-sites, and the first and fourth half-sites. The configuration conferring the greatest increase in T3 responsiveness consists of the first and fourth half-sites that are separated by 7 nucleotides. Stimulation of T3 response element functions by region E does not require the presence of additional malic enzyme sequences. In pull-down experiments, PBX1a and PBX1b specifically bind the nuclear T3 receptor-alpha, and this interaction is enhanced by the presence of T3. A T3 receptor-alpha region containing the DNA binding domain plus flanking sequences (amino acids 21-157) is necessary and sufficient for binding to PBX1a and PBX1b. These results indicate that PBX-MEIS1 complexes interact with nuclear T3 receptors to enhance T3 regulation of malic enzyme transcription in hepatocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.