Abstract

In this paper, we investigate the holonomy structure of the most accessible and demonstrative 2-dimensional Finsler surfaces, the Randers surfaces. Randers metrics can be considered as the solutions of the Zermelo navigation problem. We give the classification of the holonomy groups of locally projectively flat Randers two-manifolds of constant curvature. In particular, we prove that the holonomy group of a simply connected non-Riemannian projectively flat Finsler two-manifold of constant non-zero flag curvature is maximal and isomorphic to the orientation preserving diffeomorphism group of the circle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.