Abstract

We apply the holonomic gradient method introduced by Nakayama et al. (2011) [23] to the evaluation of the exact distribution function of the largest root of a Wishart matrix, which involves a hypergeometric function 1F1 of a matrix argument. Numerical evaluation of the hypergeometric function has been one of the longstanding problems in multivariate distribution theory. The holonomic gradient method offers a totally new approach, which is complementary to the infinite series expansion around the origin in terms of zonal polynomials. It allows us to move away from the origin by the use of partial differential equations satisfied by the hypergeometric function. From the numerical viewpoint we show that the method works well up to dimension 10. From the theoretical viewpoint the method offers many challenging problems both to statistics and D-module theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.