Abstract

A two-dimensional particle-in-cell Monte-Carlo code has been developed to study the physical mechanism of the hollow cathode effect (HCE) in an rf microhollow cathode discharge (rf-MHCD). Under the simulated conditions, the HCE in the rf-MHCD is the result of sheath-superposition, and both α ionization and γ ionization play a role. However, α ionization mode is predominant. Electrons undergo a pendular motion during the negative portion of the rf cycle. When the rf hollow electrode has a positive voltage, the majority of the electrons move toward the rf electrode, and the mean electron energy near the rf electrode is higher than that in a dc hollow cathode discharge, resulting in a large number of energetic electrons bombarding the hollow cathode wall, an important characteristic of the rf-MHCD. When the hollow cathode aperture is sufficiently small, many electrons strike the hollow electrode and are removed from the discharge space, so that the plasma density decreases. The average energy of the ions in the quasi-neutral plasma region near the axis is greater than the thermal energy in a molecular gas. Therefore, high density, high energy, and high chemical activity are characteristic advantages of rf-MHCD plasma sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.