Abstract

AbstractSingle‐atom metal‐insulator‐semiconductor (SMIS) heterojunctions based on Sn‐doped Fe2O3 nanorods (SF NRs) were designed by combining atomic deposition of an Al2O3 overlayer with chemical grafting of a RuOx hole‐collector for efficient CO2‐to‐syngas conversion. The RuOx‐Al2O3‐SF photoanode with a 3.0 nm thick Al2O3 overlayer gave a >5‐fold‐enhanced IPCE value of 52.0 % under 370 nm light irradiation at 1.2 V vs. Ag/AgCl, compared to the bare SF NRs. The dielectric field mediated the charge dynamics at the Al2O3/SF NRs interface. Accumulation of long‐lived holes on the surface of the SF NRs photoabsorber aids fast tunneling transfer of hot holes to single‐atom RuOx species, accelerating the O2‐evolving reaction kinetics. The maximal CO‐evolution rate of 265.3 mmol g−1 h−1 was achieved by integration of double SIMS‐3 photoanodes with a single‐atom Ni‐doped graphene CO2‐reduction‐catalyst cathode; an overall quantum efficiency of 5.7 % was recorded under 450 nm light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.