Abstract

We prove that the Hodrick-Prescott Filter (HPF), a commonly used method for smoothing econometric time series, is a special case of a linear penalized spline model with knots placed at all observed time points (except the first and last) and uncorrelated residuals. This equivalence then furnishes a rich variety of existing data-driven parameter estimation methods, particularly restricted maximum likelihood (REML) and generalized cross-validation (GCV). This has profound implications for users of HPF who have hitherto typically relied on subjective choice, rather than estimation, for the smoothing parameter. By viewing estimates as roots of an appropriate quadratic estimating equation, we also present a new approach for constructing confidence intervals for the smoothing parameter. The method is akin to a parametric bootstrap where Monte Carlo simulation is replaced by saddlepoint approximation, and provides a fast and accurate alternative to exact methods, when they exist, e.g. REML. More importantly, it is also the only computationally feasible method when no other methods, exact or otherwise, exist, e.g. GCV. The methodology is demonstrated on the Gross National Product (GNP) series originally analyzed by Hodrick and Prescott (1997). With proper attention paid to residual correlation structure, we show that REML-based estimation delivers an appropriate smooth for both the GNP series and its returns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.