Abstract
This chapter summarizes the classical results of Hodge theory concerning algebraic maps. Hodge theory gives nontrivial restrictions on the topology of a nonsingular projective variety, or, more generally, of a compact Kähler manifold: the odd Betti numbers are even, the hard Lefschetz theorem, the formality theorem, stating that the real homotopy type of such a variety is, if simply connected, determined by the cohomology ring. Similarly, Hodge theory gives nontrivial topological constraints on algebraic maps. This chapter focuses on the latter, as it considers how the existence of an algebraic map f : X → Y of complex algebraic varieties is reflected in the topological invariants of X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.